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Summary	  
 
ParVis is a new project funded under LAB 10-05: “Earth System Modeling:  Advanced 
Scientific Visualization of Ultra-Large Climate Data Sets”. Argonne is the lead lab with 
partners at PNNL, SNL, NCAR and UC-Davis.   
 
This report covers progress from when work began (as funding arrived at the various 
institutions July - September, 2010) through Sept. 30, 2011 
 
A primary focus of ParVis is introducing parallelism to climate model analysis to greatly 
reduce the time-to-visualization for ultra-large climate data sets.  For this report, it is 
convenient to summarize the work in the first year as two tracks with different time 
horizons:  one track is to provide immediate help to climate scientists already struggling 
to apply their analysis to existing large data sets.  The other track focused on building a 
new data-parallel library and tool for climate analysis and visualization that will give the 
field a platform for performing analysis and visualization on ultra-large datasets for the 
foreseeable future. 
 
We completed all of our first-year milestones and made our first-year deliverable: a 
task parallel (using Swift) version of the latest Atmospheric Model Working Group 
diagnostic package.  This version was made available to the community for free via the 
ParVis website. 

Progress	  on	  short-‐term	  improvements	  

Swift-‐based	  climate	  model	  diagnostics	  
 
Swift is a system for the rapid and reliable specification, execution, and management 
of large-scale science and engineering workflows. It supports applications that execute 
many tasks coupled by disk-resident datasets - as is common, for example, when 
analyzing large quantities of data or performing parameter studies or ensemble 
simulations.  The diagnostic plots made by c-shell scripts developed by CESM working 
groups can straightforwardly be recast as many-task parallel applications. Plots from 
these scripts are used extensively by scientists evaluating climate model integrations.   
 
Prior to the start of ParVis, John Dennis of NCAR converted version 4.1.2 (circa May, 
2010) of the Atmospheric Model Working Group diagnostic package to Swift and used it 
internally for high-resolution diagnostics.  We took over this work. In our first year, we 
updated the swift version to AMWG diagnostic package version 5.1 (May, 2011) and 
made it available to the community for testing.  Figure 1 below shows that Swift can 
increase performance by an average of 3x.  Swift uses either multiple cores in a 
workstation or multiple cores/processors/nodes on a cluster to execute the parallel 
workflow. 
 



Some modifications were made to Swift to support ParVis needs. Provisions were made 
to enable the application script to specify job-specific parameters and pass them through 
to the underlying resource manager. This enables the AMWG scripts to request large-
memory compute nodes for specific application invocations that require them. The ability 
of the user script to execute MPI applications under dynamically provisioned Swift 
compute nodes was added to facilitate the integration of Pagoda into the AMWG scripts 
(see below). Automatic deletion of the un-named temporary disk files used to pass 
information between intermediate stages of the AMWG diagnostic package was 
implemented. This feature now deletes such temporary files as soon as they are no longer 
needed within a script, even where complex dependency patterns exist.  This reduces the 
overall disk storage required by the package, and makes it more feasible to execute 
within disk-space-constrained environments. Finally, several infrequently occurring race 
conditions in Swift were uncovered by the execution of the AMWG package, and have 
been fixed. 

 
Figure 1 Swift speed-ups for the AMWG diagnostics applied to various data sets. 

 
The diagnostic scripts use a combination of NCO utilities (ncra, etc.) to perform data 
reduction and NCL to make additional calculations and plots.  Pagoda, developed as part 
of the Colorado State University Global Cloud Resolving Model project, provides 
parallel versions (using Global Arrays) of the NCO utilities.  We explored the 
performance of the equivalent of ncra (called pgra) on large data sets and had 
encouraging results (Figure 2).  Thanks to our testing, Pagoda developers found that 
permuting the array order leads to additional scalability.   We will explore replacing NCO 
with Pagoda in the Swift versions of the diagnostic scripts for additional speedup. 
 
We have also developed an all-NCL version of the AMWG diagnostic package.  This 
will be used to compare the performance of Swift-based scripts that use our new ParNCL 
application with those that use NCO or Pagoda for the data reduction. 
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Figure 2 Time (seconds) vs. processor count for processing 42 GB of data with pgra for different array 
orderings. 

 
We also began work to convert the Ocean Model Working Group diagnostic package.  
This package currently makes use of several closed-source, non-free graphics packages 
(such as IDL and MatLab).  Since our focus is on free and open-source software, we are 
first converting the OMWG diagnostic package to use NCL for all plotting.  We will then 
convert it to Swift.  This work is being done in collaboration with, and enthusiastic 
support of, developers of the OMWG diagnostics. 

Improvements	  to	  NCL	  
 
Two student intern projects were completed during the past year to improve NCL 
immediately.  One project explored if OpenCL could be leveraged to improve the speed 
of selected NCL functions through parallel processing performed on commodity-level 
GPUs and multicore CPUs.   A second project explored integrating the Earth System 
Modeling Framework (ESMF) regridding capabilities into NCL, allowing users to regrid 
to and from various topographically rectangular and unstructured grids.  The regridding 
functionality is a highly requested user feature, and critical in the IPCC AR5 for 
comparing model runs generated on large, complex, and dissimilar grids. The ESMF 
work is being integrated into the next release of NCL.   
 
As part of parallelizing NCL we needed to prioritize software development along costly, 
with respect to the time taken, code paths in the interpreter. Although there are existing 
NCL functions to time statements in NCL scripts, manually modifying NCL scripts 
require knowledge of the internal workings of the script as well as the interpreter. 
Moreover it is cumbersome if we need to modify multiple scripts, like in a diagnostic 



package, to determine NCL functions that can be parallelized. Therefore we needed a 
simple way to profile NCL scripts that is agnostic of the internal workings of the script. 
 
We developed a profiling layer for the NCL interpreter to automatically profile NCL 
scripts. If turned on at compile time the profiling layer monitors and records script 
resource usage statistics at runtime. The statistics are stored in a log file for further 
investigation. 

Progress	  on	  long-‐term	  tasks	  
 
ParVis’ long term plan for enabling ultra-large climate data analysis involves developing 
a new high-performance data-parallel library for performing standard climate calculations 
on both regular and unstructured grids, the Parallel Climate Analysis Library (ParCAL). 
ParCAL will in turn be used to build a parallel version of NCL called ParNCL.   We are 
also performing working to take in to account future hardware considerations including 
exploring compression, cloud computing approaches to analysis and new approaches to 
3D visualization of climate data.  Significant progress was made on all tasks. 

ParCAL	  development	  
 
Starting from scratch in March 2010, we have a working prototype of ParCAL. We asked 
the current NCL user community for their priorities and experience with operations that 
were to slow because of the volume of data.  The results have helped us prioritize which 
functions to implement first in parallel.  Three of the most time-consuming algorithms 
have been implemented and fully tested, including dim_avg_n (which calculates averages 
over an array’s dimension, typically time), max_element and min_element. ParCAL is 
built upon the Mesh Oriented database (MOAB), Parallel Netcdf (PnetCDF) and Intrepid 
libraries.  Details of dealing with the structured and unstructured numerical grids and I/O 
will be handled by MOAB and PnetCDF. The combination of MOAB and Intrepid 
enables the concise and succinct expression of the complex and computationally 
intensive algorithms such as computing vorticity and divergence.   
 
The architecture of ParCAL is shown in Figure 3. 
 
The Fileinfo class provides an abstraction of multiple files and a higher-level 
interface to manage files.  Details such as the management of opening and closing a file, 
looking up which file contains a specific time step, information retrieval of file metadata 
etc. are all handled within the class. Underneath, MOAB and PNetCDF are employed to 
perform parallel read and write of data. 
 
With the PcVAR class, access to the mesh data is simplified. If the mesh data is on disk, 
MOAB will be used to load data into the memory and a marker will be set to facilitate 
later access. The distinction between variables from a file and variables created by a user 
is necessary because the implementation needs to know whether to go to disk for the data 
or just allocate the space in memory. 



 
Figure 3: ParCAL Architecture 

The analysis functionality is divided into two categories, native and Intrepid. Native 
algorithms are those implemented with only ParCAL or MOAB methods and datatypes 
while Intrepid algorithms are more complicated analysis functions dependent on Intrepid 
library. 
 
Miscellaneous Functionality includes four major module: ERR is for dealing with 
program errors, LOG for logging functionality, PROF for performance profiling and 
MEM module for memory specific operations. 
 
We are following modern software engineering practices in developing ParCAL. 
Autotools (autoconf, automake and libtool) have been used for generating automatic 
configuration scripts.  “make”, “make install” and “make check” are all implemented.   
“make check” invokes unit tests created with the Boost Test Library - Unit Test 
Framework.  All the algorithms implemented so far are fully tested. Cases such as 
reading only the header information, reading from a single file and from a series of files 
are all covered.  Nightly testing is enabled with the buildbot system.  Currently there are 
eight different configurations being tested every night, such as the trunk test, compilation 
for debugging, documentation generation, mpich compilation, openmpi compilation, 
compiled with gcc and intel compiler etc.  ParCAL uses the Doxygen system for self-
documentation and automatic generation of API documents. 

MOAB/ParCAL	  development	  

We have made several changes to MOAB to facilitate the development of ParCAL.  

Serial,	  Parallel	  Import	  of	  Climate	  Data	  
A new reader was implemented in MOAB for reading climate data from NetCDF-
formatted files.  Several new reader options were implemented in this reader: 

• Variable=<…>: allows specification of one or more variables to read 



• Nomesh: only read variables from the file; used for time-dependent data when the 
mesh was already read from a previous timestep 

• Timestep=<…>, Timeval=<…>: for reading files storing multiple timesteps, 
allows specification of timestep to read, in terms of either timestep number or 
time value 

Climate data files are encountered with data spread over files in various ways, e.g. a 
single file with multiple variables and timesteps, or one file per timestep.  The reader 
options above provide the flexibility to read data organized in all those ways. 
 
The NC reader has the option of reading in serial or parallel, using the Netcdf or Parallel-
NetCDF libraries, respectively.  This reader was benchmarked on up to 1024 processors 
of the Fusion cluster at Argonne. 

Partition	  Methods	  
Reading a structured mesh in parallel requires partitioning the mesh over processors, such 
that each processor owns a subset of the overall domain.  The partitioning method can 
strongly affect the parallel load balancing and communication costs in subsequent 
operations.  Four different partitioning methods were implemented in MOAB’s structured 
mesh representation: 

1. Alljorkori: a 1D partition that partitions the mesh in the j, k, or i dimension, 
whichever is largest. 

2. Alljkbal: a 2D partition that partitions the j and k dimensions with the goal of 
forming square (in j and k) subdomains while keeping the number of j and k 
values constant over all processors. 

3. sqij: a 2D partition that forms square (in i and j) partitions, with some parts on the 
end of the i and j dimensions having one fewer i or j value. 

4. sqjk: like sqij, but over the j and k dimensions. 
A reader option, PARTITION_METHOD, was implanted to allow run-time selection of 
the partitioning method when reading a mesh.  For the benchmark data used, there were 
relatively small differences in performance between these partition options, with sqij 
performing slightly better than the others. 

Resolving	  Shared	  Entities	  
A parallel mesh representation must be able to not only read the mesh partitioned over 
processors, but also identify portions of the mesh shared between processors.  This is 
necessary to support operations like summing a field over vertices, i.e. to avoid double 
counting fields on shared vertices.  MOAB provides a function for resolving this sharing, 
based on global vertex ids (which are established from information in the mesh file).  
MOAB’s initial implementation of shared vertex resolution was for unstructured mesh, 
and the time spent resolving shared vertices was much greater than the time to read the 
data.  Therefore, we implemented the capability to resolve shared vertices using the 
structured mesh information.  This reduced resolve times by over an order of magnitude.  
The resulting read times for the benchmark problem were competitive with those of serial 
climate data analysis tools. 
 
 



Intrepid/ParCAL	  development	  
 
Progress on integrating Intrepid in to ParCAL has proceeded along 3 complementary 
directions. 
 
Intrepid-‐MOAB	  interaction  We have enhanced interoperability between MOAB and 
Intrepid. Three example drivers were written for solving three different partial differential 
equation systems with the finite element method. These examples use MOAB to read in 
the mesh and to provide access to mesh components and their connectivities and use 
Intrepid to define basis functions on cells, perform integration over cells, and for 
assembly of the linear systems. 
 
Data	  remap We are developing and evaluating the necessary software infrastructure for 
data transfer (remap) between grids. Example code has been developed to map data from 
one grid onto another with bilinear interpolation using MOAB and Intrepid. An example 
of mapping the function f(x) = 1+sin(x) sin(y) from a triangular Cartesian grid onto a 
quadrilateral Cartesian grid is shown in Figure 4. Interpolation examples have also been 
set up on finite volume latitude/longitude grids at several different resolutions. Evaluation 
of the example code reveals the need for an efficient, parallel search algorithm that will 
locate target grid nodes in source grid. Such an algorithm is required to facilitate 
incorporation of the data transfer into ParCAL. 
 

 
Figure 4  Interpolation of a scalar function from a (left) triangular source grid to a (right) quadrilateral target 
grid. 

 
Data	  processing  Computation of differential operators such as vorticity and divergence 
in NCL relies on interpolation of the data by globally supported spherical harmonic 
expansions. We have demonstrated an alternative approach based on piecewise 
polynomial reconstruction of the data by finite element basis functions which is more 
parallelizable then the spherical harmonic method. To this end, we wrote code to 
compute vorticity and divergence given a vector velocity field on a latitude-longitude 
grid. This code uses nodal basis functions and nodal velocity values to approximate the 
velocity field over a cell. Vorticity and divergence calculated using both NCL and the 
Intrepid method are shown in Figures 5 and 6. Initial work has been done to integrate the 



code used for these figures into ParCAL. 
 

 
 
Figure 5  Vorticity plotted with NCL and calculated with the (a) parallel local cell approach of Intrepid and (b) 
serial spherical harmonic approach of NCL. 

 

 
Figure 6 As in Figure 5 but for Divergence. 

ParNCL	  Development	  
 
ParNCL (Parallel NCL) is a parallel version of the NCL interpreter that will perform 
climate data analysis in parallel.  It is being written using the ParCAL library. 
 
The NCL interpreter is written in C and Fortran programming languages. As part of the 
ParNCL development we modified the NCL interpreter source code to add hooks to 
ParCAL (Parallel Climate Analysis library) to perform data analysis in parallel. We store 
the climate data read from NetCDF files using MOAB (A Mesh-Oriented Database). The 
parallel interpreter is launched like a parallel program written in MPI using the MPI job 
launcher. 
 
One of the primary design goals of the project is to avoid user modification of the NCL 
scripts to run it in parallel. We achieved this goal by modifying the interpreter to run and 
perform data analysis in parallel. However this required several changes to the existing 



data structures and interfaces inside the interpreter. 
 
The overall architecture of ParNCL is outlined in Figure 7. A brief description of the 
design changes is given below. 
 
• NCL Object 

o The interpreter has an object class hierarchy to represent NCL types (byte, 
integer, float etc.), data (one-dimensional, multidimensional etc.), variables 
(file variable, list variable etc.) and other NCL objects (graphics object etc.). 
The parent class of all objects is the NCL object. Since several types of NCL 
objects can potentially be a distributed object, we modified the NCL object 
data structure to optionally represent a distributed NCL object. 

o Since the values of these objects are potentially distributed, we modified the 
objects to store a handle to this storage. We also added functionality to gather 
this distributed data when needed. 

 
 
 
• File Object interface 

o The interpreter has 
a generic file object interface that 
provides access to the various file 
formats supported by NCL. This 
generic interface was modified to 
allow creating, opening, reading 
and writing multiple files in 
parallel. 
 
• Parallel NetCDF reader 

o The File I/O 
module in the interpreter contains 
a reader for each file type (HDF4, 
HDF5, NetCDF4, Grib etc.) 
supported by NCL. We added a 
new file reader module for reading 
NetCDF data in parallel. ParNCL 

interacts with MOAB to read and 
write NetCDF data in parallel through ParCAL. 

 
• ParCAL Interface layer 

o ParNCL interacts with ParCAL and MOAB to perform data analysis in 
parallel. However these two libraries are written in C++ and the NCL 
interpreter is written in C. Therefore we added a lite interface layer to translate 
between NCL and ParCAL data structures. 

 
• Parallel database 

Figure 7  ParNCL Architecture 



o The climate data in NetCDF files is read using MOAB, a mesh oriented 
database, and stored inside this parallel database. ParNCL interacts directly 
and indirectly via ParCAL with MOAB to read, write data in parallel. 

 

Data	  Compression	  for	  Ultra-‐Large	  data	  sets	  
 
We developed a general framework based on the characteristics of high resolution 
climate data, which allow us to develop a range of algorithms that offer a tradeoff of:  
Compression ratio versus overhead, compression ratio versus the level of parallelism, and 
compression ratio versus information loss in lossy compression. 
 
Our compression schemes contain two phases: the first phase predicts the next value 
based on the previous values, the second phase encoded the next value with entropy-
based encoding. We have compared our scheme against other schemes and also evaluated 
various design choices. We have implemented a prototype and gathered some preliminary 
results. Experiments are done with various chunk sizes because chunk size can affect 
compression ratios and degree of parallelism- 

Small chunk size: low compression ratio, high degree of parallelism 
Big chunk size: high compression ratio, low degree of parallelism 

 
We have evaluated our prototype (Figure 8) with an Intel Xeon 2.26Ghz, 6GB memory 
Dell workstation. We are using GCRM high resolution (about 15km) climate data. 
Compression speed is around 3Gbits per second when the data is in the main memory. It 
approaches the same order of magnitude of data retrieval from disks. 
 

 
Figure 8  Lossless compression ratio as a function of chunk size. 

We have also experimented with lossy compression.  Our scheme allows one to bound 
the error for each value.  Preliminary results show that we can achieve a compression 
ratio around 10 when the error bound is 0.1% (See Figure 9).   Our lossy compression 



scheme also allows 
multilayer 
compression.  
Depending on the 
required precisions, 
different layers can be 
used.  For high 
precision, use more 
layer.  For low 
precisions, less layers 
also means less I/O 
overhead. 
 
 
 
 
 

Climate	  analysis	  and	  visualization	  in	  the	  cloud	  
 
MapReduce is a functional programming approach that has been used with great success 
by Google and other commercial entities on cloud computing platforms.  MapReduce 
comprises two stages:  A Map() stage in which input data are transformed into a set of 
(key, value) pairs, and a Reduce() stage in which the (key,value) pairs produced by the 
Map stage are aggregated and analyzed, resulting in a set of answers that are also (key, 
value) pairs in which each key appears only once. MapReduce is a potent programming 
model because its framework offers support for automatic parallelism with fault-
tolerance; the MapReduce user need only implement the requisite Map() and 
Reduce()functions, which are executed within the framework. 
 
This approach is highly applicable to climate data analysis.  The narrative of a typical 
climate data analysis is:  From input data defined in a d-dimensional (d typically <= 5) 
space—three spatial dimensions, time, and variable—create a (d-s) set of s–dimensional 
subsamples from this multidimensional space, and for each subsample, compute statistics 
or other diagnostics, resulting in a (d-s)-dimensional set of results. Thus, Map()is the act 
of sample formation and Reduce() is the act of diagnostic/statistic calculation. The 
“keys” in the (key,value) pairings generated by Map() and acted on by Reduce() can 
be either a (d-s)-tuple, or as simple as a virtual linearization of the (d-s)-dimensional 
index space identifying the subsamples.  A set of Map() and Reduce() archetypes 
have been identified for typical climate data analyses, examples for spatiotemporal 
averaging of a timeseries of 2D slices are presented in Table 1.  
 

TABLE 1.  SPECIMEN MAPREDUCE ARCHETYPES FOR AVERAGING 
 

Figure 9  Lossy compression ratio as function of error bound. 



Operation / Yield Map  Intermediate Key Reduce 
Grid-point timeseries 
average of 2D field / 
2D averaged field 

Identify gridpoint 
timeseries 

Gridpoint index space 
tuple or virtual 
linearization thereof 

Average on 
timeseries ID key 

Global Average /  
Scalar timeseries plot 

Identify time slices Time index Average for each 
2D slice by ID 
key 

Zonal Average /  
(zonal,time) contour 
plot 

Identify zonal band 
for each time slice 

(zone,time) index 
tuple or virtual 
linearization therof 

Compute average 
for each band by 
ID key 

Zonal and Time 
Average / Scalar 
zonality plot 

Identify zonal 
bands 

Zonal index Compute average 
of for each ID key 

 
 
A prototype implementation of a MapReduce climate data analysis toolset has been 
implemented and tested on a stand-alone (uniprocessor) Hadoop system.  Hadoop was 
chosen because it is a highly portable (from laptops to clusters) open-source software 
framework.  A more compelling reason for choosing Hadoop is that it supports 
streaming; that is, one can implement stand-alone Map and Reduce executables and 
obviate the need for coding Map/Reduce functions in Java or confronting language 
interoperability issues.  The kernels developed thus far are written in Python.  Python is a 
language renowned for ease-of-use in rapid prototyping.  Python leverages a large 
collection of community-developed mathematical and statistical packages (e.g., numpy 
and scipy).   Finally, Python obviates the requirement of implementing in Java 
MapReduce input (output) readers (writers) for climate data formats as Python offers 
widely used packages supporting netCDF, hdf, and GRIB can be leveraged.  
 
The prototype system supports only the netCDF file fomat.  It does this by using the 
pupynere (http://pypi.python.org/pypi/pupynere/) API, which operates on the assumption 
that netCDF files it is presented conform to the netCDF file format resulting from the 
netCDF reference implementation.  Thus, the prototype does not require the netCDF 
library to be installed on the target system.  The present set of kernels support 
spatiotemporal averaging of univariate data samples.  Performing averaging along a 
different dimension—zonal averaging—requires only a change in Map function to emit a 
different set of keys to be paired with the data values. 
 
Execution of these kernels is accomplished within the streaming Hadoop framework.  
Performance analysis has been deferred until some of the prototypes are running on a 
Hadoop cluster, but the main determinants of scaling will be how amenable a particular 
application is to multiple Map and Reduce processes; that is, the Map function will 
parallelize well for analyses comprising large numbers of source files and the Reduce 
function’s scaling will be determined by the degree of granularity (i.e., the number of 
unique “keys” resulting from a the applications Map operation).  This is the next 
development step, to be followed by performance studies of large-scale test problems.  



Optimization will be pursued as needed.  Future development steps will involve 
interoperability with ParCal. 

3D	  visualization	  and	  analysis	  
 
We have been continuously enhancing the capability of our 3D visualization software 
ICAV. One direction is adding the ability to render 3D hexagonal mesh data such as 
encountered in the GCRM at high quality and speed. Hexagonal meshes have become 
increasingly popular, and an efficient visualization solution for large data will soon be in 
high demand. Production software tools such as VisIt renders hexagonal mesh data by 
resampling the mesh into tetrahedral cells first. The problem with this approach is the 
excessive amounts of tetrahedral cells generated and the potential imprecision of 
rendering tetrahedral cells that are treated as linear elements. We have experimented with 
a few different approaches including different ways to resample the mesh into one that 
can be stored and processed more efficiently with a GPU. After extensive testing, we 
found that remeshing does not promise a scalable solution, and have thus decided to 
attempt direct rendering of the hexagonal mesh. For this study, we had used a toy dataset 
so far. We have obtained a large GCRM dataset that will enable us to better evaluate our 
work with respect to quality, accuracy, and scalability. We have also upgraded our ICAV 
with a cleaner implementation of the rectilinear-grid volume renderer and integration 
with NCL images (Figure 10). 

 
Figure 10  Coupling of volume rending of the KAPPA isopycnal diffusion coefficient across the globe couple 
with a corresponding NCL image.  

Users can now freely orient the visualization, control color and transparency of the 
volume, cut away and couple with NCL images (Figure 11). 

 
Figure 11  Ice mixing ratio from a hurrican simulation. 



Project	  Management	  

Project	  organization	  and	  resources	  
 
The PI is responsible for coordinating effort among the various tasks and insuring 
progress is made on deliverables.  The project is spread over 5 institutions and a “lab 
lead” at each is responsible for coordination of the ParVis members at their respective 
institutions.  The leads are:  Robert Jacob (ANL), Pavel Bochev (Sandia), Karen 
Schuchardt (PNNL), Don Middleton (NCAR) and Kwan-Liu Ma (UC-Davis). 
 
All team members participate in biweekly conference calls devoted to updates and 
discussion of near-term development.  The ANL web and audio service provider, 
AdobeConnect, is used to facilitate sharing presentations and recording notes from the 
call. Two mailing lists hosted by Argonne are also used by the team: one for general 
discussion (parvis) and another for development details and code check-in messages 
(parvis-dev). 
 
 
We have biannual all-hands meetings.  Our kickoff meeting was held Sept 29-30, 2010, 
at Argonne National Laboratory and the second meeting was April 11-12, 2011, at 
NCAR.  A brief third meeting was held in conjunction with the DOE ESM PI meeting on 
Sept 21, 2011. 
 
The PI keeps the ParVis advisory panel (David Randall (CSU) and William Gustafson 
(PNNL), Gokhan Danabasoglu (NCAR), Cecilia Bitz (University of Washington) and 
David Lawrence (NCAR)) advised of progress and solicits feedback from them. 
 
The MCS division at Argonne provides resources for software development (svn 
repository, bug tracking and test/development machines).  We have also obtained an 
allocation of computer time on Argonne’s Fusion cluster for testing on tens to hundreds 
of processors.  ParVis developers have been given access to the Eureka analysis/viz 
cluster at the Argonne Leadership Computing Facility through the INCITE project led by 
Warren Washington (time on Eureka is not charged to the project) 
 
Communication	  with	  the	  broader	  community  
 
We maintain a website (http://trac.mcs.anl.gov/projects/parvis) to both host software we 
make available for the community and provide notes and material for ParVis team 
members.  Most of the content is world readable except for the repository and the ticket 
system.  As ParCAL matures, we will open up the repository for anonymous checkout of 
the source code.  We also maintain a one-way mailing list (parvis-ann) that anyone can 
subscribe to for announcements about ParVis and ParVis software. 
 
We introduced ParVis to the community at the 16th CESM Workshop in June, 2011.  
There was an overview poster in the poster session as well as a talk (“Introducing 
ParVis”) during the Software Engineering Working Group meeting.  We also emailed the 



co-chairs of all the CESM working groups to alert them to the project and its goals.  A 
second talk and poster was given at the DOE ESM PI meeting in September of 2011.  
The ParVis PI along with the PI’s of the other visualization projects submitted a 
successful session proposal for the Fall AGU meeting that will further educate the 
community about our efforts. 

Interaction	  with	  other	  projects	  
 
We have had discussions with the other LAB10-05 projects on how to collaborate.  We 
identified a possible interoperability path through the VTK data model that is common to 
all the software under development.  
 
Under other funding, NCL developers have implemented NCL as a backend service for 
the Live Access Server (LAS) to perform simple visualizations and analysis 
computations on the Earth System Grid (ESG), a data distribution portal that houses 
scientific data collections---including CMIP5---at sites around the globe.  This path will 
allow ParNCL to also be used as a backend for LAS on ESG. 
 
Members of the BER “Ultra High Resolution Global Climate Simulation” project (PI: 
Jim Hack, ORNL) have contacted us about using the Swift-based AMWG diagnostics to 
help analyze their data.   We are working with developers of HOMME, a dycore 
scheduled to be the default in the next release of CAM and the main atmosphere model in 
the CSSEF project, to ensure its grids can be read efficiently by ParCAL. 
 


